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1.0   Executive Summary 

  This report presents the principal results obtained from our research 

on improving the yield strength and creep resistance of FeCo-based 

alloys for elevated temperature magnetic bearing applications.  This 

work has proceeded in two areas: (i) inducing grain growth by 

annealing of as-rolled Hiperco 50HS alloys obtained from Carpenter 

Technology Corp. in order to improve the creep resistance; (ii) 

optimizing a novel electrochemical deposition process to produce 

oxide dispersion strengthened materials.  We have shown that large 

grain size FeCo alloys can display both the yield strength and creep 

behavior desired for high temperature magnetic applications without 

significant degradation of the magnetic properties.  Annealing Hiperco 

50HS FeCo at 1200°C for one hour resulted in an average grain size 

of 161μm.  In addition, a subgrain microstructure of average subgrain 

size 10μm was produced along with precipitation of second phase 

particles at the subgrain boundaries.  Preliminary analysis indicated 

that the precipitates were niobium carbide.  This unique 

microstructure resulted in very much enhanced creep rates at 

temperatures up to 600°C.  Much of the yield strength lost owing to 

the increase in grain size was regained in the larger grain size 

materials, apparently owing to the subgrain structure and reinforcing 

second phase precipitates.  Thus, this simple processing of 

commercially available alloys has produced materials displaying 

properties very near that desired for high temperature military 

applications. Further work optimizing the annealing schedule and 

resulting microstructure should produce even greater improvements.  

The synthesis of oxide dispersion strengthened, metal matrix 

composites by a novel electrochemical deposition process using a 

rotating disk electrode that displays enhanced mechanical properties 

without significant degradation of the magnetic properties has been 

demonstrated for a nickel-based system.  Difficulties were 

encountered in attempting to extend this method to FeCo. Although 

we believe this method still holds promise for the FeCo system, more 

development work is needed. 

 

2.0   Introduction 

 Owing to its superior magnetic properties, FeCo-based alloys have 

attracted a great deal of interest for their application as soft magnets 

components such as rotors in magnetic bearings in propulsion 

engines.  For many of these applications, the alloys are subjected to 
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an extreme environment of high stress and high temperature. As a 

result, these materials must possess both high mechanical strength 

and low creep rate at elevated temperatures; behaviors that are 

lacking in currently employed materials.  The challenge is to develop 

synthesis and/or processing methods that significantly improve the 

mechanical properties of these FeCo-based systems while not 

adversely affecting the superior soft magnetic properties.   

  Although a great deal of work has been conducted during the several 

past decades on the yield strength of FeCo-based alloys, there has 

been much less attention paid to the creep properties.  There is 

general agreement that the primary creep mechanism is power law 

(dislocation) creep, which is relatively less well understood compared 

to diffusional (Nabarro- Herring and Coble) creep.  Empirically it has 

been observed in several metallic systems that the creep resistance is 

sensitively dependent on certain microstructural features.   

 Strengthening by the introduction of second phase oxide particles has 

been shown to be one method of enhancing both the yield strength 

and creep resistance.  This can be understood as resulting from the 

oxide particles acting as obstacles to dislocation glide.  It has also 

been shown that for many metallic systems increasing the grain size 

by, for example, inducing grain growth through thermal annealing, can 

exponentially enhance the creep resistance.  The reason for this 

behavior is not well understood.  Concomitant with this behavior is 

reduced yield strength owing to the reduction in the grain boundary 

(Hall-Petch) hardening.  Thus, it is expected that if increased grain 

size is employed to improve the creep properties it will be necessary 

to address the associated reduction in the yield strength by some 

other hardening mechanism. 

 

3.0   Methods, Assumptions and Procedures 

 

3.1   Mechanical Strengthening Strategies We have pursued two strategies 

for producing FeCo-based alloys with enhanced mechanical 

properties.  The first involved subjecting commercially available 

Hiperco 50HS sheets to annealing treatments that induced grain 

growth.  Originally the aim was to characterize the relationships 

between grain size and creep resistance at elevated temperatures, as 

well as room temperature yield strength.  As was mentioned above, it 

was anticipated that while the creep resistance would increase, the 
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yield strength would decrease, owing to grain growth.  However, our 

results showed that both creep resistance and yield strength 

increased after certain annealing treatments, ultimately reaching 

values very close to that needed for military applications.  This 

exciting and unexpected behavior is believed to be a result of unique 

microstructural features as discussed below. 

 

3.2   The second strengthening strategy was to produce oxide-

strengthened FeCo materials by a novel electrochemical deposition 

method employing a rotating disk electrode.  Although it was not 

expected that this approach would be practical as a synthesis method 

for actual materials to be used in the field, it was hoped that it could 

be used to produce samples for proof of concept testing.  Results 

obtained from the annealed Hiperco materials will first be presented; 

this will be followed by a discussion of the electrodeposition process. 

 

4.0  Results and Discussion 

 

4.1  Annealed Hiperco Alloys Annealing treatments on Hiperco 50HS FeCo 

alloys were conducted to induce grain growth.  The 50HS system was 

selected as it has displayed excellent magnetic properties as well as 

good room temperature yield strength.  The furnace anneals were 

conducted under reducing atmosphere conditions. 

 

4.2  Microstructure. Figure 1 shows a bright field transmission electron 

micrographs (TEM) of an Hiperco 50HS FeCo alloys subjected to an 

anneal at 700°C for four hours.  It is seen that this anneal produced 

equiaxed grains of about 0.3 μm average grain size.  Figure 2 shows 

a bright field TEM of a sample annealed at 700°C for 4hr displaying 

an average grain size of about 0.7μm.  Figures 3-6 are optical 

micrographs for alloys annealed at 843°C for 2hr, 1000°C for 1hr, 

1100°C for 1hr, and 1200°C for 1 hr, respectively.  The average grain 

size ranged from about 10μm in Figure 3 to 161μm in Figure 6.  

Figure 7-9 are bright field TEM for alloys annealed at 1200°C for 1hr, 

producing an average grain size of 161μm.  It is seen that a subgrain 

microstructure developed with what appeared to be precipitate 

particles formed at the subgrain boundaries. Preliminary energy-

dispersive X-ray spectroscopy (EDS) analysis indicated that these 

particles contained a large concentration of Nb; we speculate that the 

particles are niobium carbide.  As discussed below, the presence of 
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the subgrain structure and reinforcing precipitate particles may be 

responsible for the enhanced yield strength and may also contribute 

to the improved creep resistance. 

 

                 
Figure 1. Bright field TEM of an Hiperco 50HS alloy subjected to an anneal 

of 650°C for 4hr. Average grain size of about 0.3μm. 

 

 

 

                  
Figure 2. Bright field TEM of an Hiperco 50HS alloy subjected to an anneal 

of 700°C for 4hr. Average grain size of about 0.7μm. 
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Figure 3. Optical micrograph of an Hiperco 50HS alloy subjected to an 

anneal of 843°C for 2hr. Average grain size of about 10μm. 
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Figure 4. Optical micrograph of an Hiperco 50HS alloy subjected to an 

anneal of 1000°C for 1hr. Average grain size of about 16μm. 
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Figure 5. Optical micrograph of an Hiperco 50HS alloy subjected to an 

anneal of 1100°C for 1hr. Average grain size of about 70μm. 
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Figure 6. Optical micrograph of Hiperco 50HS alloy subjected to an anneal 

of 1200°C for 1hr. Average grain size of about 161μm. 
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Figure 7. Bright field TEM of Hiperco 50HS alloy subjected to an anneal of 

1200°C for 1hr. Average grain size of about 161μm. A subgrain structure is 

displayed. 
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Figure 8. Higher magnification dark field TEM of an Hiperco 50HS alloy 

subjected to an anneal of 1200°C for 1hr displaying subgrain of size about 

1μm. 
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Figure 9. Bright field TEM of Hiperco 50HS alloy subjected to an anneal of 

1200°C for 1hr. Arrows point to apparent precipitates at the subgrain 

boundaries. 
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Figure 10. Room temperature tensile stress-strain curves for annealed 

50HS alloys with different grain sizes. 

 

 
Table 1. Yield and ultimate tensile strengths for annealed 50HS alloys of 

different grain sizes. 

    

  11

 

Table 1.  Yield and ultimate tensile strengths for annealed 50HS alloys of different grain sizes. 

 

 

3.3 Tensile Stress-Strain Tests 

Figure 10 shows a comparison of room temperature tensile stress-strain curves obtained from 

annealed 50HS alloys with different grain sizes. Table 1 gives the yield and ultimate tensile 

strengths for these alloys. Unlike previous studies in which annealed alloys displayed Hall-

Petch-type behavior (i.e., reduced yield strength with increased grain size), in this study there is 

no simple correlation of strength with grain size. While initially increasing the grain size does 

result in softening, further grain size increases are accompanied by increased strengthening.  This 

suggests that hardening effects due to the subgrain structure and precipitates, observed during the 

high temperature anneals, return some of the strengthening lost due to the grain size increase. 
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4.3  Tensile Stress-Strain Tests Figure 10 shows a comparison of room 

temperature tensile stress-strain curves obtained from annealed 50HS 

alloys with different grain sizes.  Table 1 gives the yield and ultimate 

tensile strengths for these alloys.  Unlike previous studies in which 

annealed alloys displayed Hall- Petch-type behavior (i.e., reduced yield 

strength with increased grain size), in this study there is no simple 

correlation of strength with grain size.  While initially increasing the 

grain size does result in softening, further grain size increases are 

accompanied by increased strengthening.  This suggests that 

hardening effects due to the subgrain structure and precipitates, 

observed during the high temperature anneals, return some of the 

strengthening lost due to the grain size increase. 

 

                

 
Figure 11. Creep strain for different applied stresses at 500°C as a function 

of time for Hiperco 50HS with average grain size of 161μm. 
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Table 2. Creep rates for different applied stresses and temperatures for 

Hiperco 50HS with average grain size of 161μm. 

 

4.4  Creep testing went as expected, the largest grain size samples (161μm) 

displayed the greatest creep resistance for a given temperature.  

Figure 11 shows the creep strain for different applied stresses at 500°C 

as a function of time for this alloy.  Table 2 shows the creep rates for 

different applied stresses and temperatures.  It is seen that this largest 

grain size material displayed creep rates very close to the high creep 

resistance properties required for military applications.  With further 

refinements in the annealing process to produce the optimal 

microstructure composed of a large overall grain size, a smaller subgrain 

structure, and reinforcing second phase precipitates, even greater 

enhancements in both yield and creep strength should be achievable. 

 

4.5  Oxide-Dispersion Strengthened Electrodeposited Alloys.  Using a novel 

rotating disk electrode electrochemical deposition system, we have been 

able to produce nickel-matric materials with a second phase oxide 

dispersion.  The nickel electrolyte in which the electrodeposition took 

place contained a suspension of oxide particles that under the influence 

of the rotating disk electrode became embedded in the growing metal.  

The volume fraction of the oxide could be sensitively controlled by 

adjusting the oxide concentration in the electrolyte, the deposition 

current density, and the electrode rotation rate.  The resulting metal-
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oxide composite displayed significant hardness enhancements 

compared to the single phase nickel with little degradation of the 

magnetic properties.  We were able to perfect the electrodeposition of 

relatively large area and thickness FeCo alloy films in the absence of an 

oxide dispersion; however, difficulties were encountered attempting to 

deposit FeCo with the oxide dispersion.  We are currently working with 

collaborators at IBM-Yorktown Heights to overcome these difficulties. 

 

5.0  Conclusions 

  As previously discussed, we have obtained exciting results indicating 

that it is possible, using the proper annealing treatment on commercially 

available Hiperco alloys, to obtain the required creep resistance and 

yield strength, as well as magnetic properties, for high temperature 

military applications.  Thus, it may not be necessary to develop materials 

with an oxide dispersion.  TEM microstructural studies indicate that the 

annealed alloy has a subgrain microstructure and that small precipitates 

have formed, particularly at the subgrain boundaries.  It is believed these 

features result in the enhanced mechanical properties. 

 

6.0  Recommendations 

  Further materials work is needed in order to determine the strengthening 

mechanisms in more detail as well as the stability of the microstructure.  

It is also suggested that a small scale rotating machine prototype be 

constructed from this new annealed material, and be tested at various 

elevated temperature conditions to see how it performs in a real world 

application. 
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